
1

Achieving O(log3 n) Communication-Efficient
Privacy-Preserving Range Query in Fog-Based IoT

Hassan Mahdikhani, Rongxing Lu, Senior Member, IEEE, Yandong Zheng, Jun Shao,
and Ali Ghorbani, Senior Member, IEEE

Abstract—The advance of Internet of Things (IoT) techniques
has promoted an increasing number of organizations to explore
more mission-critical solutions. However, the response latency,
bandwidth usage, and reliability are still challenging issues in
traditional IoT. To tackle these challenges, fog-based IoT has
become popular and range query is one of the most frequently
used operations in fog-based IoT, where, given a range query,
a fog node will return the aggregated data from IoT devices to
the query user. Because the fog nodes are not fully trusted, there
is a desire to design a privacy-preserving range query scheme
in fog-based IoT. However, most of existing privacy-preserving
range query schemes are not efficient in terms of communication
overhead, especially for a large-size range. Therefore, it is still
a challenging issue to design a communication-efficient range
query in fog-based IoT. Aiming at this challenge, in this paper,
we propose a new privacy-preserving range query scheme in fog-
based IoT. Specifically, we first devise an efficient homomorphic
encryption scheme for maintaining the data privacy and security
in a range query. Then, we present a novel range decomposition
technique to compile the range query, which can transform a
given range query [L,U], where 0 ≤ L ≤ U ≤ n−1, into a semi-
triangular structure, and enable our proposed scheme to achieve
O(log3 n) communication efficiency. Detailed security analysis
shows that our proposed scheme is really privacy-preserving,
and the extensive performance evaluation demonstrates that our
proposed scheme is efficient in terms of low communication
overhead and computational cost.

Index Terms—Fog-based IoT, range query, privacy-preserving,
communication efficiency.

I. INTRODUCTION

With ongoing advances in research and development of
the Internet of Things (IoT), the connected IoT devices are
deployed in an ever-increasing number of projects in dif-
ferent fields [1]–[4], varying from cryptocurrencies (IOTA
Tangle [5]) to even food safety industries [6] and smart
grid [7]–[9] and they generate huge volumes of data. As
reported in [10], there will be more than 10 billion IoT devices
interconnected via the internet by 2020, and all these devices
will generate around 4.4 trillion GB of data. As a result, IoT
emerging technologies will be expected to investigate in the
decades ahead, as they have been broadly studied over the
past few years. In conventional IoT applications, IoT devices
are employed to gather distributed data from the operational

H. Mahdikhani, R. Lu, Y. Zheng, and A. Ghorbani are with the Canadian
Institute for Cybersecurity, Faculty of Computer Science, University of
New Brunswick, Fredericton, Canada E3B 5A3. e-mail: (hmahdikh@unb.ca,
rlu1@unb.ca, yzheng8@unb.ca, ghorbani@unb.ca).

J. Shao is with School of Computer and Information Engineer-
ing, Zhejiang Gongshang University, Hangzhou, China 310018 e-mail:
(chn.junshao@gmail.com).

Manuscript received December xx, 2019.

environment and transmit them to central decision-making
points in the cloud. Obviously, in outsourcing time-sensitive
big data applications, certainly there exist some potential
concerns, such as the response latency, bandwidth usage, and
reliability that should be carefully considered [11]. To this end,
fog-based IoT has been emerged to address the aforementioned
factors where the big data is being analyzed. The response is
aggregated closer to where the IoT devices are deployed [12]–
[14]. At the same time, the fog extends the conventional cloud
to the edge of the network providing real-time or at least fast
enough computation, and also efficient storage and networking
services, between the IoT devices and cloud layer/users [15].
However, since the fog nodes are deployed at the network
edge, they may not be fully trusted. As a result, privacy-
preserving techniques are essential in fog-based IoT scenarios.

In this paper, we will devise an efficient privacy-preserving
range query scheme in fog-based IoT. In our system, there
are N IoT devices {Ii|1 ≤ i ≤ N}, and each Ii is preparing
a reported data xi ∈ [0, n − 1]. For the query user, he/she
intends to submit his/her range query request to a fog node
at the network edge. The range query is in the form of
[L,U], which means that the user queries “the number of
IoT devices whose data xi is within the range [L,U], where
0 ≤ L ≤ U ≤ n − 1”. A potential application scenario for
this kind of range query is a smart grid, where a smart grid
operator uses the query to track the finer-grained electricity
consumption of a neighborhood for better scheduling and
optimization purposes [16]. Aiming to achieve desired privacy
goals, the query user expects to keep the range values, i.e., L
and U , confidential, and each Ii tries to keep its individual data
xi secure. A naive approach towards such privacy-preserving
range query is to use homomorphic encryption (HE) schemes
such as BGN [17] and Paillier [18]. Suppose that n = 10,
and there are N = 20 IoT devices {Ii|1 ≤ i ≤ 20} and each
Ii is preparing its data xi, where 0 ≤ xi ≤ n−1 = 9. At
the same time, the user intends to run the range query with
corresponding parameters L= 2, and U = 6. With the naive
solution, the user first represents the query range [L,U] as
an array A = {0, 0, 1, 1, 1, 1, 1, 0, 0, 0} of size n. A[i] is set
to one if L ≤ i ≤ U and otherwise it is set to zero. Then,
he/she encrypts A with the HE encryption algorithm Enc() as
Enc(A) = {Enc(A[0]), Enc(A[1]), · · · , Enc(A[9])}. After
that, he/she sends Enc(A) to the fog node which forwards
Enc(A) to each IoT device. Upon receiving Enc(A) from
the fog node, each IoT device Ii with its ready-to-report value
xi calculates ci ← selfBlind(Enc(A[xi])) and sends its ci
to the fog node. Note that, the selfBlind is a nice property

2

of HE for better privacy preservation, where a ciphertext
can be transformed into another one without changing the
corresponding plaintext [19], [20]. Finally, the fog node ag-
gregates the ciphertexts received from the IoT devices into
a single ciphertext, i.e., C =

∑N
i=1 ci and then sends C to

the query user. Although the above naive solution can satisfy
the privacy concerns in the range query, its communication
cost is prohibitively large, i.e., O(n). In order to reduce the
communication cost, Lu [16] proposed a privacy-preserving
range query scheme with O(

√
n) communication efficiency,

which is acceptable for small values of n, but cannot support
large-size n. Therefore, designing a communication efficient
privacy preserving range query scheme in fog-based IoT is
still challenging, especially for a large n value.

Aiming at the above challenges, in this paper, we propose
a new efficient privacy-preserving range query scheme with
O(log3 n) communication efficiency for fog-based IoT. More
precisely, our main contributions in this paper are summarized
as follows:

• First, we design a novel decomposition technique, which
can transform a given range query [L,U] into several
space efficient semi-triangular structures, and further
turns them into sparse matrices for keeping the privacy
of the query.

• Second, we propose a symmetric homomorphic encryp-
tion scheme, which can support b = log2 n times
multiplicative homomorphic operations. The proposed
homomorphic encryption (SHE) scheme not only offers
different homomorphic operations, but also provides an
efficient and secure way to prepare, disseminate, and
calculate ciphertexts.

• Third, based on the decomposition technique and the
proposed symmetric homomorphic scheme, we present
an efficient privacy-preserving range query scheme with
O(log3 n) communication efficiency for fog-base IoT.

• Finally, we analyze the security of our proposed scheme
and evaluate its performance. The results show that our
proposed scheme can indeed satisfy the desired privacy
concerns, and outperforms the most recently developed
approach in [16] in terms of computational costs and
communication overhead.

The remainder of the paper is structured as follows. The
system and security models along with design goal are in-
troduced in Section II. Section III contains the description
of our symmetric homomorphic encryption scheme and its
properties. Then, Section IV presents our proposed scheme,
followed by security analysis in Section V. Furthermore, the
detailed performance evaluation is organized in Section VI.
Some related works are discussed in Section VII and, finally,
conclusions are drawn in Section VIII.

II. MODELS AND DESIGN GOAL

In this section, we formalize our system model, security
model, and identify the design goal for our communication-
efficient privacy-preserving range query. For the clear descrip-
tion, some used symbols are first listed in Table I.

TABLE I
THE LIST OF SYMBOLS USED IN PROPOSED SCHEME

Symbol Description
N The number of the IoT devices.
Ii The i-th IoT device in set I = {I1, I2, · · ·, IN}, 1≤ i≤N .
n The maximum possible value that can be sensed by IoT devices.
xi Sensed and prepared data in Ii range from 1 to n; 1≤xi≤n.

L, U Lower and upper bound in range query, 1≤L = 2a≤U = 2a
′
≤n.

I′ The subset of I where Ii’s data xi ∈ [L,U].
PP Public parameter in SHE scheme; PP = (k0, k1, k2,N).
SK Secure key in SHE scheme; SK = (p, q,L).
Enc(m) Encryption method in cryptosystem, m ∈M ∈ {0, 1}k1 .
Dec(c) Decryption method in cryptosystem, |c| = |N | = 2k0.
B Range’s binary representation, |B| = U − L+ 1.
S Hamming weight classification of B, |S| = log2 n+ 1=b+1.
C Cumulative sum values for each entry in S, |C| = |S|.
Ri Semi-triangular matrix generated from each Ci.
Ti The corresponding sparse matrix for each Ri.

A. System Model

Fig. 1 illustrates our system model from a high-level per-
spective. It consists of three major entities, namely IoT devices
I = {I1, I2, · · · , IN}, a fog node in the network edge and a
query user.

Device Layer User LayerFog Layer

Query: COUNT(𝐼𝐼′)

IoT Devices I = {𝐼𝐼1, 𝐼𝐼2, … , 𝐼𝐼𝑁𝑁}

𝐼𝐼𝑖𝑖

Response: the size |𝐼𝐼′|

Query User
Fog Node

𝐼𝐼′ ⊆ 𝐼𝐼
𝐼𝐼′ = 𝐼𝐼𝑖𝑖 𝑥𝑥𝑖𝑖 ∈ 𝐿𝐿,𝑈𝑈 ; }𝐿𝐿 = 2𝑎𝑎,𝑈𝑈 = 2𝑎𝑎𝑎

Fig. 1. System model under consideration

• IoT devices I = {I1, I2, · · · , IN}: A myriad of IoT de-
vices I of size N are remotely spread across the device layer
and get involved in a specific IoT solution. Each IoT device
Ii gathers raw data xi from the physical sensing environment
and will typically perform some processing tasks on them.
The prepared data xi afterwards will be reported to the fog
node in the upper layer for a later processing. It is worth
noting that in our system model the reported data will be
converted into an integer in the range of [0, n−1] to clarify the
processing steps and declaring the scheme. To this end, we can
easily transform floating-point values into integers by applying
simple scaling, truncating or rounding functions. However,
using a common conversion method(s) or combination of them
depends on what kind of conversion is desired and what works
best, e.g., xi = 198.73549 can be transformed into an integer
value by truncate(xi = 198.73549 ∗ 10) = 1987, if the
upper bound value for n is 211 = 2048; and xi = 1987354
for a scaling factor of 10000 where n = 221 = 2097152.
Therefore, accepting large scaling factors and consequently
large n values, which our model supports, will lead to more
accurate results. More precisely, our proposed scheme in this
work would be more effective for large n values, i.e., n ≥ 217,

3

and much more efficient than a recent related study in [16].
• Fog node: The fog layer, as an intermediate layer,

comprises various communication and computing elements,
namely fog nodes, which handle a near real-time stream of
requests and responses. In our system model, the fog node is
a computational entity more powerful than IoT devices but not
as powerful as cloud entities. After receiving prepared data xi
from lower layer IoT device Ii, the fog node applies filtering
rules and performs aggregation operations. Afterwards, the
aggregated data will be stored in local storage or rerouted
to the upper layer for further analysis. A query user in the
user layer, according to his/her query preference, will submit
a range query to fog layer and shortly receive the reply from
the fog node.
• Query user: As depicted in Fig 1, a query user can submit

a secure range query to fetch the number of IoT devices whose
prepared data x are within the range [L,U], where L and
U are respectively the lower and upper bounds of the range,
and are both in the form of “two to the power of a positive
integer”, i.e., L = 2a ≤ U = 2a

′
. Suppose that I′ is a subset

of I = {I1, I2, · · · , IN} where the prepared data xi of each
IoT device Ii ∈ I′ is within the range [L,U], i.e.,

I′ = {Ii|Ii ∈ I ∧ xi ∈ [L,U];L = 2a, U = 2a
′
} (1)

The query user will then submit the following range
count query to find the number of IoT devices whose
xi is within the given range, i.e., Query: COUNT(I′) −→
Response: the size |I′|.

B. Security Model

In our security model, all entities, deployed at both device
and fog layers, are assumed to be honest-but-curious partici-
pants, i.e., they are obliged to follow the protocols faithfully,
but may be curious about the query information during data
preparation and throughout the query processing steps. For
example: i) the fog node may try to identify the IoT devices
Ii with exact data xi, ii) each IoT device may be curious
about other IoT devices’ data, iii) both fog node and IoT
devices may try to detect the lower (L) and/or upper (U) bound
values, and finally, iv) the user may be curious about each IoT
device Ii’s prepared data or, at least, prepared data in each
IoT device in I′. Note that the honest-but-curious assumption
would be guaranteed in practice, since the service providers
should protect their own reputation and financial interests. In
addition, there would be no collusion between entities, such as
sharing their results. Lastly, to mitigate external active attacks,
some mature message authentication code techniques or digital
signature schemes could be applied. However, considering
such potential attacks are beyond the scope of this paper and
we focus on the communication efficient privacy-preserving
range query.

C. Design Goal

Based on the aforementioned requirements in both system
model and security model, our goal is to have an efficient

privacy-preserving range query scheme with O(log3 n) com-
munication efficiency in a fog-based IoT environment. Specif-
ically, the following two objectives should be satisfied.
• The proposed scheme should be privacy-preserving. In

the proposed scheme, the user’s query range [L,U] should be
privacy-preserving, i.e., no one, except the user, can determine
[L,U]. In addition, the elements of subset I′ should also
be privacy-preserving, i.e., no one can determine whether a
specific IoT device belongs to I′ or not, and only the query
user can know COUNT(I′) after the range query.
• The proposed scheme should be communication efficient.

With the intention of addressing the above privacy objectives
in range queries, additional communication overhead will
be incurred in the range query, as we have discussed in
Section I. Therefore, in the proposed scheme, we attempt to
improve the communication efficiency by achieving O(log3 n)
communication cost, which is better than the current most
communication efficient scheme with O(

√
n) communication

cost in [16].

III. PRELIMINARIES

In order to build our communication-efficient privacy-
preserving range query scheme, we need to adopt homomor-
phic encryption techniques, which can support both homo-
morphic addition and multiplication. However, most existing
homomorphic encryption schemes use public key settings,
which are not computationally efficient. For this reason, in
this section, we first introduce an efficient symmetric homo-
morphic encryption (SHE) scheme, which will serve as the
fundamental building block for our privacy-preserving range
query.

A. Description of SHE Scheme

As a symmetric homomorphic encryption scheme, SHE
mainly consists of three algorithms, namely key generation,
encryption, and decryption. In the following, we describe them
in detail.

• Key Generation: Given the security parameters
(k0, k1, k2) satisfying k1 � k2 <

k0
2 , generate the secret

key SK = (p, q,L), where p, q are two large prime
numbers with |p| = |q| = k0 and L is a random number
with the bit length |L| = k2. Then, compute N = pq
and set the public parameter PP = (k0, k1, k2,N). At
the same time, set the message space M as {0, 1}k1 .

• Encryption: A message m ∈ M can be encrypted with
the secret key SK = (p, q,L) as

c = Enc(m) = (rL+m)(1 + r′p) mod N (2)

where r ∈ {0, 1}k2 and r′ ∈ {0, 1}k0 are two random
numbers.

• Decryption: A ciphertext c = Enc(m) can be decrypted
with the secret key SK = (p, q,L) as

Dec(c) : m = (c mod p) mod L (3)

4

The correctness of the decryption is as follows.

Dec(c) = (c mod p) mod L
= (((rL+m)(1 + r′p) mod N) mod p) mod L
= (rL+m) mod L (∵ 2k2 < k0)

= m (∵ k1 � k2)

Security of SHE. Obviously, our SHE scheme is simple and
efficient. Next, we will prove that it is also secure. Let
M = rL + m, we know M < p, and then the ciphertext
c = Enc(m) = (rL+m)(1 + r′p) mod N becomes

c = M · (1 + r′p) mod N (4)

Theorem 1. Given the ciphertext c = M · (1 + r′p) mod N ,
obtaining the message M is equivalent to factoring the larger
integer N = pq.

Proof: First, if N = pq can be factored into p and q, from
the decryption algorithm, we can use p to obtain M = c mod
p. Second, if we can obtain M from c = M ·(1+r′p) mod N ,
we know r′p = (c·M−1−1) mod N . Then, from the fact that
gcd(r′p,N) = p, we can factor the larger integer N = pq.
Therefore, obtaining the message M from c is equivalent to
factoring the larger integer N = pq. Only if the larger integer
factoring problem is hard with proper parameter settings, we
can make sure that the message M is secure.

Theorem 2. Our proposed SHE scheme is secure under the
known-plaintext attack (KPA).

Proof: Given a pair (c,m), a ciphertext c = Enc(m) =
(rL+m)(1 + r′p) mod N and its corresponding plaintext m,
we will show that an adversary still cannot obtain the secret
key SK = (p, q,L). First, in order to obtain the secret key
(p, q), according to Theorem 1, it is equivalent to obtain the
message M = rL + m from (c,m). Since the bit-length of
the whole rL is |rL| = 2k2, we know the adversary can guess
the correct rL and M = rL+m only with probability 1

22k2
.

Therefore, only if the parameter k2 is well set, the secret key
(p, q) cannot be obtained from (c,m). Second, the adversary
can directly guess the correct secret key L with probability
1

2k2
. But he still needs to guess the correct r with probability

1
2k2

so as to guess the correct rL and M = rL+m. Therefore,
guessing L with probability 1

2k2
is not helpful for guessing

M and the secret key (p, q) with probability 1
22k2

. As a result,
our proposed SHE scheme is secure under the known-plaintext
attack (KPA).

B. Homomorphic Properties of SHE

Given the public parameter PP , our proposed SHE scheme
enjoys the following homomorphic properties:
• Homomorphic Addition-I: Given two ciphertexts c1 =
Enc(m1) = (r1L + m1)(1 + r′1p) mod N , c2 =
Enc(m2) = (r2L + m2)(1 + r′2p) mod N , we have
c1 + c2 → Enc(m1 +m2). This is because

c1 + c2

= (r1L+m1)(1 + r′1p) + (r2L+m2)(1 + r′2p) mod N
= (r1 + r2)L+m1 +m2 + α · p mod N
⇒ ((c1 + c2) mod p) mod L
= ((r1 + r2)L+m1 +m2) mod L = Enc(m1 +m2)

where α = (r1r
′
1 + r2r

′
2)L+ (m1r

′
1 +m2r

′
2).

• Homomorphic Multiplication-I: c1 · c2 → Enc(m1 ·m2).
This is because

c1 · c2
= (r1L+m1)(1 + r′1p) · (r2L+m2)(1 + r′2p) mod N
= β′L+m1 ·m2 + α′ · p mod N
⇒ ((c1 · c2) mod p) mod L
= (β′L+m1 ·m2) mod L = Enc(m1 ·m2)

where α′ and β′ are derived from c1 · c2.
• Homomorphic Addition-II: Given a ciphertext c1 =
Enc(m1) = (r1L+m1)(1+r′1p) mod N , and a plaintext
m2, we have c1+m2 → Enc(m1+m2). This is because

c1 +m2

= (r1L+m1)(1 + r′1p) +m mod N
= r1L+m1 +m2 + (r1L+m1) · p mod N
⇒ ((c1 +m2) mod p) mod L
= (r1L+m1 +m2) mod L = Enc(m1 +m2)

• Homomorphic Multiplication-II: c1·m2 → Enc(m1·m2).
This is because

c1 ·m2

= (r1L+m1)(1 + r′1p) ·m2 mod N
= r1m2L+m1 ·m2 + (r1L+m1)m2 · p mod N
⇒ ((c1 · c2) mod p) mod L
= (r1m2L+m1 ·m2) mod L = Enc(m1 ·m2)

Based on the above homomorphic properties of SHE, we will
design our communication-efficient privacy-preserving range
query scheme in next section.

IV. OUR PROPOSED SCHEME

In this section, we will describe our privacy-preserving
range query scheme in fog-based IoT. Before delving into the
details, we first present our decomposition technique, which
is a building block in our proposed scheme.

A. The Decomposition Technique

Our decomposition technique can transform a query range
[L = 2a, U = 2a

′
] into (log2 n + 1) sparse matrices, where

a ≤ a′ and 0 ≤ L ≤ U ≤ n − 1 and consists of five steps,
1) range query formulation, 2) binary representation of the
range, 3) Hamming-weight classification, 4) cumulative sums
structures construction, and finally 5) semi-triangular matrices
generation. Note that, for a clear description, we also take the
values n = 32, [L = 23, U = 24] and instantiate a simple
example in Fig. 2, in which 6 sparse matrices {T0, · · · , T5}
are generated, since log2 n+ 1 = log2 32 + 1 = 6.

1) Range Query Formulation: Given the lower bound L and
upper bound U , the general syntax of a range query statement
can be outlined using an array A[0..n−1] as follows,

A[i] =

{
1, L ≤ i ≤ U ;
0, otherwise. (5)

where 0 ≤ L ≤ U ≤ n− 1 and 0 ≤ i ≤ n− 1.

5

𝑛𝑛 = 32
𝑏𝑏 = log2 𝑛𝑛 = 5
𝐿𝐿 = 23 = 8
𝑈𝑈 = 24 = 16
0 ≤ 𝐿𝐿 ≤ 𝑈𝑈 ≤ 𝑛𝑛 − 1; L =2𝑎𝑎, U =2𝑎𝑎′

Ra
ng

e
w

ith
 b

in
ar

y
re

pr
es

en
ta

tio
n

𝑆𝑆 = �
𝑖𝑖=0

𝑏𝑏=5
𝑆𝑆𝑖𝑖

Cl
as

sif
ic

at
io

n
by

 H
am

m
in

g
W

ei
gh

t (
HW

)

𝑆𝑆𝐻𝐻𝐻𝐻(𝑥𝑥)

01000
01001
01010
01011
01100
01101
01110
01111
10000

B0

BU-L

Cumulating

0

1 1 1 1
1 0 0 0

0 1 1
1 1 1 1
1 0 0 0

0 1
0 1 1

0 1 1 0
1 0 0 0

1 0 0 0

0
0 1

0 1 0
0 1 0 0

0

T0

T1

T2

T3

T4

T5

Generating Matrices

Se
m

i-t
ria

ng
ul

ar
 a

nd
 S

pa
rs

e
M

at
ric

es

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A

0 1 1
0 1 1 0

0 1 1 0 0
1 0 0 0 0

R3

1 1 1 1 1
1 0 0 0 0

R1

0 0 0 0 0R0

0 1 1 1
1 1 1 1 0
1 0 0 0 0

R2

1 0 0 0 0

0 1
0 1 0

0 1 0 0
0 1 0 0 0

R4

0 0 0 0 0

0
0 0

0 0 0
0 0 0 0

0 0 0 0 0

R5

3

2

1

0

1

0

0

2

1

0

0

4

3

2

1

1

5

4

3

2

0

0 1 2 3 4

01001
01010
01100

S2

S0

01011
01101
01110

S3

01111S4

S5

01000S1

10000

01112
01122
01222

C2

C0

01123
01223
01233

C3

01234C4

C5

01111C1

11111

Fig. 2. Converting a range query into semi-triangular and sparse matrices. For example, the corresponding range query [L,U] = [23, 24] of array A where
L ≤ U ≤ 31 is transformed into (log2 n) + 1 = 6 sparse matrices T0, T1, · · · , Tlog2 n.

2) Binary Representation of the Range: In this step, the
given range query [L,U] is converted into a vector of bit-
strings. As shown in Algorithm 1, for each i ∈ [L,U], generate
the equivalent binary sequence of i by simply applying two
bitwise operations RightShift and AND. Clearly, the expected
output B is a vector of binary strings where |B| = U −L+ 1
and each entry B`, where 0 ≤ ` ≤ U −L, of B is a string of
zeros and ones of length b, i.e., B` ∈ {0, 1}b and b = log2 n,
as shown in Fig. 2.

Algorithm 1 Range’s Binary-Representation
Input: b = log2 n, L, and U ; 0≤ L = 2a≤ U = 2a

′≤n− 1
Output: Vector ; |B| = U − L+ 1, and |B` ∈ B| = b
1: B ← Ø; `← 0 . 0 ≤ ` ≤ U − L
2: for each i ∈ [L,U] do
3: c← b− 1
4: B` ← “ ”
5: while c ≥ 0 do
6: B`.APPEND

(
RIGHTSHIFT(i, c) & 1

)
7: c← c− 1
8: `← `+ 1
9: return B

3) Hamming Weight Classification: The Hamming weight
of a given bit-string x is the Hamming distance (HD)
of two equal-length bit-strings x and zero-codewords; i.e.,
HD(x, {0}|x|). In other words, the Hamming weight of a
given bit-string x is the number of ones in x and it can be com-
puted by the HAMMINGWEIGHT() procedure in Algorithm 2.
For example, the Hamming weight of B0 in Fig. 2, can be
denoted as HD(“01000”, “00000”) = 1. Therefore, all the
input bit-strings in vector B will be categoried into log2 n+ 1
classes to form vector S as shown in Algorithm 2, as well as
S = (S0, S1, · · · , S5) in our simple example in Fig. 2, which

will be used to generate the cumulative sum structure in the
next step.

Algorithm 2 Hamming Weight Classification
Input: Vector

Output: Vector <Vector <S>> and |S| = log2 n+ 1 = b+ 1
1: S ← Ø
2: for each B` ∈ B do
3: ω ← HAMMINGWEIGHT(B`) . 0 ≤ ω ≤ b
4: Sω .ADD(B`)

5: return S

6: procedure HAMMINGWEIGHT(x)
7: t← 0
8: while x 6= 0 do
9: x = x & (x− 1)

10: t← t+ 1
11: return t

4) Cumulative Sum Structure Construction: As shown in
Algorithm 3, in this step, our goal is to generate the cumulative
sum structure for each entry in S, i.e., ∀sj ∈ Si, 0 ≤ i ≤ b.
As seen in lines 6-11 of the algorithm, a cumulative sum t is a
same-length sequence of partial sums of a given bit sequence
x or clearly the value at each index of t equals the sum of
current and all the preceding values. For example, as shown in
Fig. 2, the cumulative sum c0 ∈ C3 = “0, 1, 1, 2, 3” for s0 ∈
S3 = “01011” can be interpreted as: c00 = s00 = 0, c01 =
s01 + c00 = 1 + 0 = 1, c02 = s02 + c01 = 0 + 1 = 1, c03 =
s03+c02 = 1+1 = 2, and finally c04 = s04+c03 = 1+2 = 3.
It should be noted that, unlike the B’s and S’s elements, each
cj ∈ Ci is itself a vector of integer values instead of bits to
store the partial sums.

5) Semi-triangular Matrices Generation: Finally, Algo-
rithm 4 converts the cumulative sum structure C into semi-

6

0,1,1,1,2
0,1,1,2,2
0,1,2,2,2

C2

0 1 1 1 2C20

R2[0][0] 1

R2[1][1] 1
R2[1][2] 1
R2[1][3] 1
R2[2][4] 1

0

1
1
1
2

0 1 2 2 2C22

R2[0][0] 1

R2[1][1] 1
R2[2][2] 1
R2[2][3] 1
R2[2][4] 1

0

1
2
2
2

0 1 1
0 1 1 1
1 0 0 0

T2

0 1 1 1
0 1 1 1 0
1 0 0 0 0

R2

Lower bound entry

Upper bound entry

R2 0 0 1 1 1
0 1 1 1 0
0 0 0 0 0

2

1

0

0 1 2 3 4

R2 0 0 0 0 1
0 1 1 1 0
1 0 0 0 0

2

1

0

0 1 2 3 4

Set all the elements between
upper and lower bound to 1.

Fig. 3. Generating matrix R2 and sparse structure T2 from cumulative sum C2

Algorithm 3 Cumulative Sum Structure
Input: S = {Si} =

{
{sj |HAMMINGWEIGHT(sj) = i}

}
Output: Vector < Vector <Vector <C>>> and |C| = |S|
1: C ← Ø
2: for each Si ∈ S do . 0 ≤ i ≤ b
3: for each sj ∈ Si do
4: Cij .ADD

(
CUMMULATIVESUM(sj)

)
. j = 0, 1, 2, · · ·

5: return C

6: procedure CUMMULATIVESUM(x)
7: Vector <t> ← Ø
8: t.ADD(x0)
9: for i = 1 to LENGTH(x)− 1 do

10: t.ADD
(
xi + t.GET(i− 1)

)
11: return t

triangular matrices. For clarity, we take the cumulative sum
C2 in Fig. 2 as an example to show how to transform C2

to a semi-triangular matrix R2, as depicted in Fig. 3. Before
analyzing the example, it should be noted that the result matrix
Ri has i + 1 rows and b = log2 n columns and is initialized
as a zero matrix at the beginning of the process. Meanwhile,
the row index numbering starts from zero and is increased
from bottom to up, and analogously the column index starts
from zero and is numbered from left to right. Therefore, the
result matrix R2 has 3 = 2 + 1 rows and 5 = b = log2 32
columns. In our detailed example in Fig. 3, the cumulative
sum C2 consists of three b-dimensional entries, i.e., c20, c21,
and c22. In the following, we show how to generate R2 from
C2 step by step.

Step 1: Choose the lower and upper bound entries in C2,
i.e., the first entry c20 and the last entry c22, and generate
matrices for them. In specific, with c20 = “0, 1, 1, 1, 2”, we
can generate the lower bound entries in R2 by updating

R2

[
c20[k]

][
k
]

=

{
1, 0 ≤ k ≤ 4
0, otherwise. (6)

Similarly, with c22, we generate the upper bound entries in R2

by updating

R2

[
c22[k]

][
k
]

=

{
1, 0 ≤ k ≤ 4
0, otherwise. (7)

Step 2: Continue to generate the matrix Ri by setting all
entries between the lower bound and upper bound to ones.
After this step, we have b + 1 matrices, i.e., {R0, · · · , Rb}.
Note that, our strategy to only find the lower and upper bounds
and fill all entries between them as ones in each matrix Ri.
That speeds the generation of Ri, and its correctness for
supporting the range query can be found in Theorem 3.

Step 3: Simplify each Ri to be a matrix Ti for 0 ≤ i ≤ b,
which can be divided into two cases.
• Case 1: For R0 and Rb, since R0 and Rb will only be

set to 1 when the range query contains the lower bound
value 0 and the upper bound value n− 1 = 2b − 1; and
set to 0 otherwise. Therefore, we can simplify R0 and Rb
to be 1 × 1 matrices T0 and Tb. For example, in Fig. 2,
both T0 and T5 are set to 0 because the given range query
[L,U] = [8, 16] does not include the lowest value 0 and
the highest value 31.

• Case 2: For Ri (1 ≤ i ≤ b−1), since the last columns of
Ri can be generated by simply combining a single one
and i zeros, as shown in Fig. 2 and Fig. 3 (highlighted in
yellow). Therefore, this entire column and related entries
can be discarded to increase communication efficiency.
Furthermore, in each matrix Ri, we can drop 1 + 2 + 3 +
· · · + (i − 1) entries, which are highlighted in grey, to
obtain the corresponding matrix Ti.

Algorithm 4 Semi-triangular Matrices

Input: C = {Ci} =
{
{cj}

}
=
{{
{Elementk}

}}
Output: Vector <R[][]>
1: R← Ø
2: for each Ci ∈ C do . 0 ≤ i ≤ b
3: j ← {0, Ci.SIZE()} . Lower and upper bound entries
4: for each Elementk ∈ cj do . 0 ≤ k ≤ b− 1

5: t← Elementk
6: Ri[t][k]← 1

7: for each LOWERBOUND < Ri[][] < UPPERBOUND do
8: Ri[t][k]← 1 . c0≤ t≤cCi.SIZE() ∧ 0≤k≤b− 1

9: return R

Theorem 3. Our strategy employed for efficiently generating
the matrices Ri, i = 0, · · · , b + 1, can support the range

7

queries in the form of [L = 2a, U = 2a
′
], where 0 ≤ a ≤

a′ ≤ b = log2 n.

Proof: In order to prove the correctness of our strategy
to support the range query [2a, 2a

′
], we first prove that our

strategy can support the range queries [0, 2a] and [0, 2a
′
].

For the range query [0, 2a], the parameter settings are b =
log2 n; [L,U] = [0, 2a]; the Hamming weight ω is within 0 ≤
ω ≤ a; and 0 ≤ a < b. First, after the Hamming weight
classification, the lower bound LSω and upper bound USω for
each class Sω , where 0 ≤ ω ≤ a, are expressed as follows:

ω = 0 ⇒ lower LS0
= upper US0

= 0, i.e., 0 · · · 0︸ ︷︷ ︸
b

ω = ω ⇒

lower LSω : 0 · · · 0︸ ︷︷ ︸

b−ω

1 · · · 1︸ ︷︷ ︸
ω

upper USω : 0 · · · 0︸ ︷︷ ︸
b−a

1 · · · 1︸ ︷︷ ︸
ω

0 · · · 0︸ ︷︷ ︸
a−ω

1 ≤ ω ≤ a

Then, the corresponding cumulative sums are defined as

ω = 0 ⇒ lower LC0
= upper UC0

= 0, i.e., 0 · · · 0︸ ︷︷ ︸
b

ω = ω ⇒

lower LCω : 0 · · · 0︸ ︷︷ ︸

b−ω

123 · · ·ω︸ ︷︷ ︸
ω

upper UCω : 0 · · · 0︸ ︷︷ ︸
b−a

123 · · ·ω︸ ︷︷ ︸
ω

ω · · ·ω︸ ︷︷ ︸
a−ω

1 ≤ ω ≤ a

For any value x ∈ [0, n − 1], if its Hamming weight
HW (x) = ω is ω ≤ a, then x must belong to the class
Sω . More accurately, it is easy to see that the value of x lies
in the range [LSω , USω]. As shown in Fig. 4, the cumulative
sums LCω = 0 · · · 0︸ ︷︷ ︸

b−ω

123 · · ·ω︸ ︷︷ ︸
ω

, UCω = 0 · · · 0︸ ︷︷ ︸
b−a

123 · · ·ω︸ ︷︷ ︸
ω

ω · · ·ω︸ ︷︷ ︸
a−ω

of Sω’s lower and upper bounds LSω , USω form a shaded
parallelogram area. Because all elements in Sω have the same
weight ω, their cumulative sums will finally reach the same
point Rω[ω][b] = 1 in the matrix Rω . Therefore, if x really
belongs to [LSω , USω], its cumulative sum will be within the
shaded parallelogram area in Fig. 4. As a result, our strategy
of only finding the lower and upper bounds and filling all
entries between them as ones in each matrix Rω can support
the range query with [L,U] = [0, 2a]. Obviously, our strategy
can also support the range query [0, 2a

′
]. Next, we prove that

our strategy can support the range query [L = 2a, U = 2a
′
].

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
⋮ ⋮ ⋮
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

𝑈𝑈𝑆𝑆𝝎𝝎= 0⋯ 0
𝑏𝑏−𝑎𝑎

1⋯1
𝝎𝝎

0⋯0
𝑎𝑎−𝝎𝝎

𝐿𝐿𝑆𝑆𝝎𝝎= 0⋯0
𝑏𝑏−𝝎𝝎

1⋯1
𝝎𝝎

| 𝑏𝑏 − 𝝎𝝎 |

|← 𝑏𝑏 − 𝑎𝑎 →|

|
𝝎𝝎

|

|
𝝎𝝎

|

𝑏𝑏 = log2𝑛𝑛
𝐿𝐿,𝑈𝑈 = 0, 2𝑎𝑎

0 ≤ 𝐿𝐿 ≤ 𝑈𝑈 ≤ 𝑛𝑛 − 1, 0 ≤ 𝝎𝝎 < 𝑎𝑎

Fig. 4. Parallelogram area enclosed between the lower and upper bound
values for the Hamming weight class Sω range query [L,U] = [0, 2a].

For any value x ∈ [0, n − 1], if its Hamming weight
HW (x) = ω is ω ≤ a ≤ a′, then x must belong to the

|
𝝎𝝎

|

| 𝑏𝑏 |

| 𝑏𝑏 − 𝑎𝑎 |
| ← 𝑏𝑏 − 𝑎𝑎′ → || 𝑎𝑎𝑎 − 𝝎𝝎 |

| 𝑎𝑎 − 𝝎𝝎 || 𝝎𝝎 |

Fig. 5. Yellow-shaded parallelogram area enclosed between the lower
and upper bound values for the Hamming weight class Sω in range query
[L,U] = [2a, 2a

′
].

class Sω . Based on the above discussion, the range [0, 2a
′
]

can generate a parallelogram with the length (a′ − ω) times
the height ω, and the range [0, 2a] can generate a parallelogram
with the length (a−ω) times the same height ω in the matrix
Rω , as shown in Fig. 5. Hence, if x really belongs to the
range [L = 2a, U = 2a

′
], its cumulative sum will be within

the yellow-shaded parallelogram area in the matrix Rω . As
a result, for each matrix Rω , where ω ≤ a ≤ a′, we can
first find the lower bound LSω : 0 · · · 0︸ ︷︷ ︸

b−a

1 · · · 1︸ ︷︷ ︸
ω

0 · · · 0︸ ︷︷ ︸
a−ω

, the upper

bound USω : 0 · · · 0︸ ︷︷ ︸
b−a′

1 · · · 1︸ ︷︷ ︸
ω

0 · · · 0︸ ︷︷ ︸
a′−ω

, and fill all entries between

them as ones can support the range query [L,U] = [2a, 2a
′
].

For any value x ∈ [0, n − 1], if its Hamming weight
HW (x) = ω is a < ω ≤ a′, then x must belong to the class
Sω . Because ω > a, the range [0, 2a] does not contribute
any element in class Sω . Therefore, all elements in Sω are
generated from the range [0, 2a

′
]. As a result, for each matrix

Rω , where a < ω ≤ a′, we can first find the lower bound
LSω : 0 · · · 0︸ ︷︷ ︸

b−ω

1 · · · 1︸ ︷︷ ︸
ω

, the upper bound USω : 0 · · · 0︸ ︷︷ ︸
b−a′

1 · · · 1︸ ︷︷ ︸
ω

0 · · · 0︸ ︷︷ ︸
a′−ω

,

and fill all entries between them as ones can support the range
query [L,U] = [2a, 2a

′
]. By summarizing all of the above

discussions, we complete the proof of Theorem 3.

B. Communication Overhead of the Decomposition Technique

Since the novelty of our O(log3 n) communication-efficient
range query drives its efficiency form our novel decomposition
process, here we will briefly review the decomposition steps
and prove its efficiency. Our decomposition technique will
convert the original range query [L,U] into corresponding
matrices, namely semi-triangular matrices Ri’s which ulti-
mately result in sparse matrices Ti’s. In the following, we
will determine the exact number of ciphertexts to form the
distinct semi-triangular and sparse matrices. First, both T0 and
Tb are 1× 1 matrices, so the communication cost (denoted as
C) is C = 2. Second, the remaining Ri’s, 1 ≤ i ≤ b − 1
can be organized by b − 1 matrices in which each one has
b columns. Clearly, the last column, cells shaded in yellow
color, can be discarded and since each matrix Ri and the
corresponding Ti contain i+1 rows, therefore the total number
of required ciphertexts in Ti is (b − 1) ∗ (i + 1). Up to this
point, the communication cost is C = 2+

∑b−1
i=1 (b−1)(i+1).

Finally, the unused area of each Ti should be eliminated

8

with a considerable reduction in the number of transmitted
ciphertexts. Specifically, 1 + 2 + · · · + (i − 1) = i(i−1)

2
reflects the appropriate number of shaded cells in Ri that can
be eliminated in this step to form each Ti. As a result, the
proposed algorithm’s communication cost C is

C = 2 +

b−1∑
i=1

(b− 1)(i+ 1)−
b−1∑
i=1

i(i− 1)

2

= 2 +
(b− 1)2(b+ 2)

2
− (b− 1)b(b− 2)

6

= 2 +
2b3 + 3b2 − 11b

6
∈ O(log3 n)

C. Description of Our Proposed Scheme

We will now give a detailed description of our
communication-efficient privacy-preserving range query
scheme in fog-based IoT. It consists of five phases: 1) query
user key generation, 2) range query generation at query user,
3) query response at IoT devices, 4) response aggregation at
the fog node, and 5) response recovery at query user.

1) Query User Key Generation: For the simplicity’s sake,
we consider n = 2b to represent n as a b-bit binary
value. Given the input parameters (k0, k1, k2), the query user
generates the secret key SK = (p, q,L) and the public
parameter PP based on our previously described SHE scheme.
Then, the query user keeps the secret key SK and sends
the public parameter PP to the fog node and IoT devices
I = {I1, I2, · · · , IN}. In order to achieve O(log3 n) com-
munication efficiency, the following two conditions should be
satisfied:

- The message space depends on k1 and it should be set
at least to dlog2Ne to successfully recover the query
response COUNT(I′) = |I′|, where N is the number of
IoT devices.

- The SHE scheme should accept at least b homomorphic
multiplication operations, therefore k0 should be set equal
to 2(b+1)k2 in order to successfully evaluate the b-depth
multiplicative circuit.

2) Range Query Generation at Query User: When the
query user intends to request a range query [L,U], where
0 ≤ L ≤ U ≤ n − 1 = 2b − 1 and L = 2a, U = 2a

′
,

he/she can generate the query request in the following steps.
Step 1: Transform the range [L,U] to be b + 1 matrices
{T0, T1, · · · , Tb} by following the decomposition technique
in Subsection IV-A.

Step 2: Encrypt each Ti for 0 ≤ i ≤ b. In specific,
in the matrix Ti, the value zero and one is encrypted to
be Enc(0) and Enc(1) with the encryption method of our
proposed SHE. Then, the query user forwards the encrypted
sparse matrices {Enc(T0), Enc(T1), · · · , Enc(Tb)} to the IoT
devices via fog node. At the same time, besides the encrypted
Ti’s, an extra Enc(0) is also generated and sent to each IoT
device, which can provide the self-blindness functionality for
our scheme. For example, the IoT device can multiply the
additional Enc(0) to a random integer value, and then the
result is added to encrypted prepared response to re-randomize
the response for protecting against the curious fog node.

3) Query Response at IoT Devices: Upon receiving en-
crypted sparse matrices {Enc(T0), Enc(T1), · · · , Enc(Tb)},
each IoT device Ii with prepared data xi will perform the
following steps to report its encrypted response. Note that,
though the employed SHE is a symmetric encryption algo-
rithm, when each IoT device reports its encrypted response,
it does not need to know the secret key SK. Instead, each
IoT device can directly perform over the ciphertexts. We will
illustrate each step by using two different examples, where
xi is within the range and out of the range. Recall the
example in Fig. 2 where the user range is bounded within
[8, 16], 0 ≤ L ≤ U ≤ n−1 = 31 and consider two different
xi, e.g., 7 is within and 10 is out of the range.

Step 1: IoT device Ii converts its prepared data xi into
binary form, e.g., 7 = (00111) and 10 = (01010).

Step 2: Compute the Hamming weight of the binary value
xi, i.e., α = HAMMINGWEIGHT(xi), which is calculated to
indicate the index of sparse matrix Ti that should be used to
calculate the encrypted result, e.g., HW

(
7 = (00111)

)
=

3 and HW
(

10 = (01010)
)

= 2, therefore IoT device will
investigate T3 and T2, respectively for xi = 7 and xi = 10.

Step 3: The IoT device generates the cumulative sum value
with respect to xi, i.e., β[0..b−1] = CUMMULATIVESUM(xi).
For example, the cumulative sum for xi = 7 is 00123 and in
case of xi = 10 is 01122.

Step 4: The IoT device Ii calculates the following multi-
plicative expression as the encrypted response.

Response(Ii) =

b−1∏
k=0

Tα[β(k)][k]

For example, the encrypted response in case of xi = 7 =
(00111)2 is

Response(Ii) =

4∏
k=0

Tα[β(k)][k]

= T3[β(0)][0]× T3[β(1)][1]× · · ·T3[β(4)][4]

= T3[0][0]× T3[0][1]× T3[1][2]× T3[2][3]× T3[3][4]

= Enc(1)× Enc(0)× Enc(1)× Enc(1)× Enc(1)
= Enc(0) ∴ 7 /∈ [8, 16]

While for xi = 10 = (01010)2, the encrypted response is

Response(Ii) =

4∏
k=0

Tα[β(k)][k]

= T2[β(0)][0]× T2[β(1)][1]× · · ·T2[β(4)][4]

= T2[0][0]× T2[1][1]× T2[1][2]× T2[2][3]× T2[2][4]

= Enc(1)× Enc(1)× Enc(1)× Enc(1)× Enc(1)
= Enc(1) ∴ 10 ∈ [8, 16]

Step 5: To protect Response(Ii) from a curious fog node,
the IoT device Ii self-blinds Response(Ii) with the extra
prepared Enc(0) as

Response(Ii) = Response(Ii) +
(
Enc(0)× r

)
where r ∈ Zn. Finally, Ii sends the self-blinded encrypted
response Response(Ii) to the fog node.

9

4) Response Aggregation at Fog Node: After receiving
all self-blinded responses from IoT devices, the fog node
aggregates the intermediate encrypted responses to generate
the final query result as

Count =
∑
Ii∈I

Response(Ii)

Then, the fog device forwards Count to the user.
5) Response recovery at query user: On receiving the

encrypted query result Count, the user uses secret key SK to
recover the range query response as

Count
Dec−−→ Count(I′) = |I′| =

∑
Ii∈I

Response(Ii)

The correctness of the result is:

Count =
∑
Ii∈I

Response(Ii) =
∑
Ii∈I

(
b−1∏
k=0

Tα[β(k)][k]

)
=
∑
Ii∈I′

Enc(1) +
∑
Ii /∈I′

Enc(0) = Enc(|I′|)

V. SECURITY ANALYSIS

In this section, we analyze the security of our proposed
privacy-preserving range query scheme. Particularly, we focus
on the privacy properties, i.e., range query [L,U] and the
subset I′ should be privacy-preserving.
• The query range [L,U] is privacy-preserving in the

proposed scheme. As described in Subsection IV-C, in or-
der to achieve the communication efficiency, the query
range [L,U] will be transformed into b + 1 sparse matrices
{T0, T1, · · · , Tb=log2 n}. At the same time, each value in
matrix Ti will be encrypted by our SHE cryptosystem, which
was shown to be secure against the known-plaintext attack
in Theorem 2. Then, the security of our SHE cryptosystem
guarantees that without knowing the secret key SK = (p, q,L)
the adversary has no idea on the matrix Ti for 0 ≤ i ≤ b. Since
both the fog device and IoT devices cannot access to the secret
key SK, they have no idea on the matrix Ti (0 ≤ i ≤ b),
i.e., they cannot distinguish whether a ciphertext in encrypted
Ti is encrypted from zero or one. Furthermore, without any
plaintext information about each Ti, the fog node and IoT
devices definitely have no idea on the query range [L,U].
Therefore, the query range [L,U] in the proposed scheme can
be kept secret from both the fog node and IoT devices, as a
result it is privacy-preserving.
• The subset I′ is also privacy-preserving in the proposed

scheme. In the proposed scheme, the subset I′ denotes a set of
IoT devices whose data are within the query range [L,U], i.e.,
I′ = {Ii|Ii ∈ I ∧ xi ∈ [L,U]}. As described in our security
model, I′ should be kept secret from the query user, fog device,
and IoT devices. For each IoT device Ii, if it attempts to obtain
the information about I′, it needs to determine whether itself
is in I′ or not and whether other IoT devices are in I′ or not.
For Ii, it uses its prepared data xi to compute the encrypted
Response(Ii), but has no idea on Response(Ii) is Enc(0) or
Enc(1). In other words, Ii does not know whether wi is in the

query range [L,U] or if Ii is in I′. For the other IoT devices,
since Ii cannot access the plaintext data prepared by them and
the plaintext of query range, it also has no idea on whether
other IoT devices are in I′ or not. Thus, the subset I′ can be
kept secret from the IoT devices.

For the fog node, it receives the encrypted query range
[L,U] from the user and the encrypted response Response(Ii)
from each IoT device Ii. It is likely to use them to de-
duce the information of the subset I′. However, on the one
hand, the query range [L,U] is transformed into matrices
{T0, T1, · · · , Tb} and are encrypted by our SHE cryptosystem.
As analyzed above, our SHE cryptosystem guarantees that the
fog node has no idea of the plaintext of the query range.
On the other hand, each IoT device’s encrypted response
Response(Ii) is also encrypted by our SHE cryptosystem.
At the same time, the Response(Ii) is self-blinding with the
factor

(
Enc(0) × r

)
. Note that, if there is no self-blinding

factor
(
Enc(0)×r

)
, it is possible for the fog node to identify

the specific IoT device’s response. Specifically, it can iterate
over all possible prepared values xi (0 ≤ xi ≤ n − 1) by
generating Hamming weight and cumulative sum values as
well as multiplying the corresponding sparse matrix entries to
check whether Response(Ii)

?
=
∏b−1
k=0 Tα[β(k)][k]. Although

it requires a lot of computations, it is feasible, especially when
n is small value. Luckily, Response(Ii) = Response(Ii) +(
Enc(0)×r

)
includes the random factor

(
Enc(0)×r

)
, which

makes it impossible for the fog node to launch a brute force
attack on IoT responses. In this case, it is almost impossible
for the fog node to obtain the information about the subset I′.
Thus, the subset I′ can be kept secret from the fog node.
For the query user, he/she receives the encrypted query re-
sponse from the fog node and recovers the plaintext of the
query result by decryption. As described in Subsection IV-C,
the query response is an aggregated result, i.e., |I′|. Thus, the
query user only knows the number of IoT devices whose data
are within the query range, but has no idea which specific IoT
device has a data within the query range. Thus, the subset I′
can be kept secret from the query user under our considered
security model.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
scheme with respect to the communication overhead and
computational cost. Specifically, we compare our proposed
scheme with a recently proposed privacy-preserving range
query scheme, i.e. Lu’s scheme [16]. Lu’s privacy-preserving
range query scheme with O(

√
n) communication complexity

is performed based on BGN homomorphic encryption [17]. In
our performance evaluation, we implemented both our scheme
and Lu’s scheme in Java (JDK 1.8 update 222) on a machine
with Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz, 8 GB
main memory, and Linux (Ubuntu 16.04) operating system.
The detailed parameter settings for both schemes are listed in
Table II. We repeated each experiment 10 times and report the
average results.

10

TABLE II
THE PARAMETER SETTINGS

Shared parameter Value
N The number of IoT devices, N = 1000
n The upper bound of [1, n], n =

{
210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230

}
[L,U] The range query lower and upper bound, 0 ≤ L ≤ U ≤ n− 1
xi IoT device Di’s prepared data, randomly picked from [1, n] where 0 ≤ wi ≤ n− 1

Proposed scheme based on SHE Lu’s scheme based on BGN Homomorphic Encryption
Parameter Value Parameter Value

b b = log2(n), b = {10, 12, 14, · · · , 30} b b =
√
n, b = {25, 26, 27, · · · , 215}

k0, k1, k2 |k2| = 40, k1 = log2N , k0 = 2(b+ 1)k2 κ κ = 512
p, q ,L, N |p| = |q| = k0, |L| = k2, N = pq p, q, N |p| = |q| = κ = 512, N = pq
M The query result M = N ∈ {0, 1}k1 ∆ The upper bound of query result, ∆ = N

2 10 2 12 2 14 2 16 2 18 2 20 2 22 2 24 2 26 2 28 2 30

n

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

C
o

m
m

u
n

ic
at

io
n

 o
ve

rh
ea

d
 (

B
yt

e)

10 7

Proposed
Lu's scheme

(a) Request from user to fog node

2 10 2 12 2 14 2 16 2 18 2 20 2 22 2 24 2 26 2 28 2 30

n

0

100

200

300

400

500

600

700

800

900

C
o

m
m

u
n

ic
at

io
n

 o
ve

rh
ea

d
 (

B
yt

e)

Proposed
Lu's scheme

(b) Response from fog node to user

Fig. 6. The communication overhead comparison between our proposed scheme and Lu’s scheme with respect to n varying from 210 to 230

A. Communication Overhead

In this subsection, we evaluate the communication overhead
of both the query request and the query response. First,
Fig. 6(a) plots the communication overhead of transferring
an encrypted query request from user to fog node in both
schemes with n varying from 210 to 230. From the figure,
we see the communication overhead of Lu’s scheme is grow-
ing exponentially, while ours remains very low and highly
efficient. This is because Lu’s scheme has to upload O(

√
n)

encrypted data from the user to the fog node, while ours only
uploads O(log3 n) encrypted data. Second, Fig. 6(b) shows
the communication overhead of a query response from the fog
node to the user in both schemes with respect to n. One can
see that both schemes are communication efficient. Although
the response cost in our proposed scheme increases with the
parameter n, but it is acceptable and as low as almost 600
bytes for n = 230.

B. Computational Cost

The computational cost, of both schemes, is influenced by
the number of encryptions performed by the user during the
range query formulation and decomposition phase. We first
compare the number of encryption operations in both schemes
with respect to n as shown in Fig. 7(a). From this figure,

we can see that the number of encryptions in Lu’s scheme is
rapidly increasing with n. This is because of the difference
in underlying decomposition technique. Lu’s scheme uses
O(
√
n) decomposition technique, whereas our scheme uses

an O(log3 n) one.
We now evaluate the computational cost of both schemes at

each step of range query processing with respect to n as shown
in Fig. 7. Specifically, Fig. 7(b) shows the query generation
execution time, which indicates that the computational cost of
Lu’s scheme grows exponentially with n, while ours grows
much more slowly due to ours having fewer encryptions.
Fig. 7(c) illustrates the query response time of both schemes
for different problem sizes. Although, the processing time in
Lu’s scheme is constant, it is still considerably higher than
ours (only one millisecond for n = 230). This is mainly
because of the time-consuming pairing operations and costly
homomorphic calculations in BGN compared with fast and
efficient multiplicative homomorphic operations in our SHE
scheme.

Fig. 7(d) depicts the response aggregation time at fog node.
Merging the IoT devices’ responses at fog node is mainly
affected by the number of IoT devices, i.e. N . Therefore,
as it is apparent from figure, the aggregation time in both
schemes is independent of problem size, even if there are
small increments in our proposed scheme, varying with n.

11

2 10 2 12 2 14 2 16 2 18 2 20 2 22 2 24 2 26 2 28 2 30

n

10 2

10 3

10 4

10 5

N
u

m
b

er
 o

f
en

cr
yp

ti
o

n
s

Proposed
Lu's scheme

(a) The number of encryptions in the decomposition phase

2 10 2 12 2 14 2 16 2 18 2 20 2 22 2 24 2 26 2 28 2 30

n

10 2

10 3

10 4

10 5

10 6

10 7

10 8

E
xe

cu
ti

o
n

 T
im

e
(m

s)

Proposed
Lu's scheme

(b) Query generation at the user side

2 10 2 12 2 14 2 16 2 18 2 20 2 22 2 24 2 26 2 28 2 30

n

10 -1

10 0

10 1

10 2

10 3

E
xe

cu
ti

o
n

 T
im

e
(m

s)

Proposed
Lu's scheme

(c) Query response at the IoT device

2 10 2 12 2 14 2 16 2 18 2 20 2 22 2 24 2 26 2 28 2 30

n

10 0

10 1
E

xe
cu

ti
o

n
 T

im
e

(m
s)

Proposed
Lu's scheme

(d) Response aggregation at the fog node

2 10 2 12 2 14 2 16 2 18 2 20 2 22 2 24 2 26 2 28 2 30

n

10 -1

10 0

10 1

10 2

10 3

E
xe

cu
ti

o
n

 T
im

e
(m

s)

Proposed
Lu's scheme

(e) Response recovery at the user side

Fig. 7. The computational cost comparison between our scheme and Lu’s scheme with respect to n varying from 210 to 230

Our scheme has insignificant changes with respect to n due to
gradually increasing ciphertext lengths, while in Lu’s scheme
the cipthertext length only depends on κ value and is conse-

quently independent of n.

Finally, Fig. 7(e) presents the response recovery time which
measures how long time the user spent decrypting the ci-

12

phertext upon receiving the encrypted result from fog node.
Obviously, they are still efficient and independent of problem
size n. However, decryption in our proposed scheme is faster
than Lu’s. Because Lu’s scheme performs in BGN and it
highly depends on the message space ∆, it can only operate
effectively with relatively smaller ∆.

VII. RELATED WORK

Recently, some related works have emerged on privacy-
preserving range queries in the fog-based IoT [16], which are
closely related to our proposed query scheme. As discussed in
Section I, in order to achieve the desired security properties
for a privacy-preserving range query, the naive solution has
an O(n) communication cost for the range query. For a
toy example with n = 10, the naive solution is efficient
enough. However, when n becomes large, the efficiency,
especially the communication efficiency rapidly deteriorates.
To improve this, Lu [16] proposed a new privacy-preserving
range query scheme built upon BGN homomorphic encryption
together with a novel range query expression, decomposition,
and composition technique. It had an O(

√
n) communication

efficiency. Therefore, when n becomes larger, Lu’s scheme
is much more efficient than the naive solution in terms of
communication overhead. However, when n becomes even
larger, e.g., n = 230, the O(

√
n) communication cost seems

too costly. In addition, because Lu’s scheme is based on
the BGN with time-consuming bilinear pairing operations in
public key settings, the computational cost is also expensive.
Aiming to improve the communication efficiency, in this
paper, we proposed a more efficient privacy-preserving range
query scheme in the fog-based IoT. Using a novel range
query decomposition technique and an efficient symmetric
homomorphic scheme (SHE), our proposed scheme achieves
O(log3 n) communication-efficiency.

When the privacy-preserving range query on “the number
of IoT devices whose data xi is within the range [L,U]” is
considered as a special privacy-preserving data aggregation
scheme in fog-based IoT, there are other related works close
to our proposed scheme. In [21], Lu et al. addressed heteroge-
neous data aggregation in real IoT applications by proposing
a light-weight privacy-preserving data aggregation (LDPA) for
fog-enabled setting. The proposed LPDA is characterized by
applying Paillier cryptosystem, Chinese Remainder Theorem,
and a one-way hash chain function to aggregate hybrid IoT
devices’ data and to early filter the injected false data at the
network edge. In [22], Huang et al. studied the fog-assisted
selective aggregation operation. Specifically, they constructed
a new threat model to formalize the non-collusive and collusive
attacks of compromised fog nodes, and their proposed privacy-
preserving and reliable selective multi-source aggregation
scheme, which is comprised of BCP cryptosystem, randomized
message-lock encryption, homomorphic proxy-authenticators,
and multi-dimensional aggregation, can well tackle the data
privacy and reliability challenges. Most recently, Mahdikhani
et al. [23] presented a privacy-preserving subset aggregation
scheme in fog-enhanced IoT scenarios, which enables a query
user to gain the sum of the prepared data from a subset of IoT

devices. To identify the subset, the inner product similarity of
the normalized vectors in the query user side and each IoT
device is securely computed. Only when the inner product is
greater than the user’s specified threshold will an IoT device’s
data be privately aggregated to form the final response.

VIII. CONCLUSION

In this paper, we have proposed a communication-efficient
privacy-preserving range query scheme for fog-based IoT. For
the range queries of the form [L = 2a, U = 2a

′
], the proposed

scheme is characterized by designing a novel range decompo-
sition technique to reduce the communication overhead to be
O(log3 n), and devising an efficient homomorphic encryption
scheme to preserve the data privacy for both the range query
and individual IoT device’s data. To the best of our knowl-
edge, the communication overhead of our proposed scheme
is much lower than that of the most communication efficient
privacy-preserving range query scheme, i.e., Lu’s scheme,
whose communication overhead is O(

√
n). Detailed security

analysis shows that our scheme is indeed privacy-preserving
under our defined security model. An extensive performance
evaluation validated the efficiency of our scheme in terms of
communication overhead and computational cost. In our future
work, we plan to expand this study by: 1) investigating more
general privacy-preserving range query functions, e.g., multi-
range query, and 2) launching more complex configuration in
the system model.

ACKNOWLEDGEMENT

This work is supported in part by NSERC Discovery Grants
(no. Rgpin 04009), Natural Science Foundation of Zhejiang
Province (grant no. LZ18F020003), and National Natural
Science Foundation of China (grant no. U1709217).

REFERENCES

[1] W. A. Amiri, M. Baza, K. Banawan, M. Mahmoud, W. Alasmary, and
K. Akkaya, “Privacy-preserving smart parking system using blockchain
and private information retrieval,” arXiv preprint arXiv:1904.09703,
2019.

[2] M. Baza, N. Lasla, M. Mahmoud, G. Srivastava, and M. Abdallah,
“B-ride: Ride sharing with privacy-preservation, trust and fair payment
atop public blockchain,” IEEE Transactions on Network Science and
Engineering, 2019.

[3] X. Li, R. Lu, X. Liang, X. Shen, J. Chen, and X. Lin, “Smart community:
an internet of things application,” IEEE Communications magazine,
vol. 49, no. 11, pp. 68–75, 2011.

[4] X. Lin, R. Lu, and X. Shen, “Mdpa: multidimensional privacy-preserving
aggregation scheme for wireless sensor networks,” Wireless Communi-
cations and Mobile Computing, vol. 10, no. 6, pp. 843–856, 2010.

[5] B. Shabandri and P. Maheshwari, “Enhancing iot security and privacy
using distributed ledgers with iota and the tangle,” in 2019 6th Interna-
tional Conference on Signal Processing and Integrated Networks (SPIN).
IEEE, 2019, pp. 1069–1075.

[6] EETimes, “5 ways the food industry can improve food safety with
the iot,” https://iot.eetimes.com/5-ways-the-food-industry-can-improve-
food-safety-with-the-iot/, 2019.

[7] M. Wen, R. Lu, K. Zhang, J. Lei, X. Liang, and X. Shen, “Parq: A
privacy-preserving range query scheme over encrypted metering data
for smart grid,” IEEE Transactions on Emerging Topics in Computing,
vol. 1, no. 1, pp. 178–191, 2013.

[8] L. Chen, R. Lu, Z. Cao, K. AlHarbi, and X. Lin, “Muda: Multifunctional
data aggregation in privacy-preserving smart grid communications,”
Peer-to-peer networking and applications, vol. 8, no. 5, pp. 777–792,
2015.

13

[9] H. Bao and R. Lu, “A new differentially private data aggregation with
fault tolerance for smart grid communications,” IEEE Internet of Things
Journal, vol. 2, no. 3, pp. 248–258, 2015.

[10] TechTarget, “The impact of iot on big data,”
https://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/The-
impact-of-IoT-on-big-data, 2019.

[11] R. Lu, X. Liang, X. Li, X. Lin, and X. Shen, “Eppa: An efficient
and privacy-preserving aggregation scheme for secure smart grid com-
munications,” IEEE Transactions on Parallel and Distributed Systems,
vol. 23, no. 9, pp. 1621–1631, 2012.

[12] S. P. Singh, A. Nayyar, R. Kumar, and A. Sharma, “Fog computing: from
architecture to edge computing and big data processing,” The Journal
of Supercomputing, pp. 1–36, 2018.

[13] Q. Kong, R. Lu, M. Ma, and H. Bao, “A privacy-preserving and
verifiable querying scheme in vehicular fog data dissemination,” IEEE
Trans. Vehicular Technology, vol. 68, no. 2, pp. 1877–1887, 2019.

[14] H. Mahdikhani and R. Lu, “Achieving privacy-preserving multi dot-
product query in fog computing-enhanced iot,” in 2017 IEEE Global
Communications Conference, GLOBECOM 2017, Singapore, December
4-8, 2017. IEEE, 2017, pp. 1–6.

[15] M. Aazam, S. Zeadally, and K. A. Harras, “Fog computing architec-
ture, evaluation, and future research directions,” IEEE Communications
Magazine, vol. 56, no. 5, pp. 46–52, 2018.

[16] R. Lu, “A new communication-efficient privacy-preserving range query
scheme in fog-enhanced iot,” IEEE Internet of Things Journal, 2018.

[17] D. Boneh, E. Goh, and K. Nissim, “Evaluating 2-dnf formulas on
ciphertexts,” in TCC 2005, Cambridge, MA, USA, February 10-12, 2005,
Proceedings, 2005, pp. 325–341.

[18] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Advances in Cryptology - EUROCRYPT ’99, Inter-
national Conference on the Theory and Application of Cryptographic
Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding, 1999,
pp. 223–238.

[19] Q. Wang, J. Huang, Y. Chen, C. Wang, F. Xiao, and X. Luo, “prost:
Privacy-preserving and truthful online double auction for spectrum
allocation,” IEEE Transactions on Information Forensics and Security,
vol. 14, no. 2, pp. 374–386, 2018.

[20] H.-T. Wu, Y.-m. Cheung, Z. Yang, and S. Tang, “A high-capacity
reversible data hiding method for homomorphic encrypted images,”
Journal of Visual Communication and Image Representation, vol. 62,
pp. 87–96, 2019.

[21] R. Lu, K. Heung, A. H. Lashkari, and A. A. Ghorbani, “A lightweight
privacy-preserving data aggregation scheme for fog computing-enhanced
iot,” IEEE Access, vol. 5, pp. 3302–3312, 2017.

[22] C. Huang, D. Liu, J. Ni, R. Lu, and X. Shen, “Reliable and privacy-
preserving selective data aggregation for fog-based iot,” in 2018 IEEE
International Conference on Communications (ICC). IEEE, 2018, pp.
1–6.

[23] H. Mahdikhani, S. Mahdavifar, R. Lu, H. Zhu, and A. A. Ghorbani,
“Achieving privacy-preserving subset aggregation in fog-enhanced iot,”
IEEE Access, pp. 1–1, 2019.

Hassan Mahdikhani holds the B.Eng.degree in
Computer Engineering-Software from Kharazmi
University, Tehran, Iran, in 2001 and the M.Eng.
degree in Computer Engineering-Software from Iran
University of Science and Technology, Tehran, Iran,
in 2006. Hassan is currently a Ph.D. candidate
in Computer Science at the University of New
Brunswick (UNB), and a cybersecurity researcher
at the Canadian Institute for Cybersecurity (CIC),
Canada. Hassan’s research interests include cloud
computing securtiy, secure and privacy-preserving

computation offloading and applied cryptography.

Rongxing Lu (S’09-M’11-SM’15) is an associate
professor at the Faculty of Computer Science (FCS),
University of New Brunswick (UNB), Canada. Be-
fore that, he worked as an assistant professor at
the School of Electrical and Electronic Engineering,
Nanyang Technological University (NTU), Singa-
pore from April 2013 to August 2016. Rongxing Lu
worked as a Postdoctoral Fellow at the University
of Waterloo from May 2012 to April 2013. He was
awarded the most prestigious “Governor General’s
Gold Medal”, when he received his PhD degree

from the Department of Electrical & Computer Engineering, University of
Waterloo, Canada, in 2012; and won the 8th IEEE Communications Society
(ComSoc) Asia Pacific (AP) Outstanding Young Researcher Award, in 2013.
He is presently a senior member of IEEE Communications Society. Dr. Lu
currently serves as the Vice-Chair (Conferences) of IEEE ComSoc CIS-TC.
Dr.Lu is the Winner of 2016-17 Excellence in Teaching Award, FCS, UNB.

Yandong Zheng received her M.S. degree from the
Department of Computer Science, Beihang Univer-
sity, China, in 2017 and She is currently pursuing her
Ph.D. degree in the Faculty of Computer Science,
University of New Brunswick, Canada. Her research
interest includes cloud computing security, big data
privacy and applied privacy.

Jun Shao received the Ph.D. degree from the
Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai, China, in
2008. He was a Postdoctoral Fellow with the School
of Information Sciences and Technology, Pennsylva-
nia State University, State College, PA, USA, from
2008 to 2010. He is currently a Professor with the
School of Computer Science and Information Engi-
neering, Zhejiang Gongshang University, Hangzhou,
China. His current research interests include network
security and applied cryptography.

Ali A. Ghorbani (SM’-) has held a variety of
positions in academic for the past 37 years is
currently a Professor of Computer Science. Tier 1
Canadian Institute for Cybersecurity, the Director of
the Canadian Institute for Cybersecurity, which he
established in 2016, and an IBM Canada Faculty
Fellow. Dr.Ghorbani is also the founding director of
the laboratory for intelligence and adaptive systems
research. His current research focus is Cybersecurity,
WebIntelligence, and Critical Infrastructure Protec-
tion. Dr. Ghorbani is the co-inventor on 3 awarded

patents in the area of Network Security and Web Intelligence and has
published over 270 peer-reviewed articles during his career. He has supervised
over 180 research associates, postdoctoral fellows, graduate and undergraduate
students during his career. He is the co-founder of the Privacy, Security,
Trust (PST) Network in Canada and its international annual conference.
Dr.Ghorbani served as the co-Editor-In-Chief of Computational Intelligence:
An International Journal from 2007 to 2017.

